Counting Affine Roots of Polynomial Systems
نویسنده
چکیده
منابع مشابه
Coupled systems of equations with entire and polynomial functions
We consider the coupled system$F(x,y)=G(x,y)=0$,where$$F(x, y)=bs 0 {m_1} A_k(y)x^{m_1-k}mbox{ and } G(x, y)=bs 0 {m_2} B_k(y)x^{m_2-k}$$with entire functions $A_k(y), B_k(y)$.We derive a priory estimates for the sums of the rootsof the considered system andfor the counting function of roots.
متن کاملToric Intersection Theory for Affine Root Counting
Given any polynomial system with fixed monomial term structure, we give explicit formulae for the generic number of roots with specified coordinate vanishing restrictions. For the case of affine space minus an arbitrary union of coordinate hyperplanes, these formulae are also the tightest possible upper bounds on the number of isolated roots. We also characterize, in terms of sparse resultants,...
متن کاملA Completeness Theorem for “ Total Boolean Functions ” July 2008
0. Introduction. Even though the question answered in this note has its roots in denotational semantics for the differential λ-calculus ([2] and [1], see also [4]), no background in proof-theory is necessary to understand the problem. In the end, it boils down to a question about a special kind of polynomials in 2n variables over an arbitrary field k. This note is almost “self-contained”, assum...
متن کاملWronskian-based tests for stability of polynomial combinations
In this paper, a stability criterion based on counting the real roots of two specific polynomials is formulated. To establish this result, it is shown that a hyperbolicity condition and a strict positivity of a polynomial Wronskian are necessary and sufficient for the stability of any real polynomial. This result is extended to the stability study of some linear combinations of polynomials. Nec...
متن کاملPolynomial Homotopies for Dense, Sparse and Determinantal Systems
Numerical homotopy continuation methods for three classes of polynomial systems are presented. For a generic instance of the class, every path leads to a solution and the homotopy is optimal. The counting of the roots mirrors the resolution of a generic system that is used to start up the deformations. Software and applications are discussed. AMS Subject Classification. 14N10, 14M15, 52A39, 52B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996